1.6 Function Operations and Composition of Functions

- Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations (addition, subtraction, multiplication, and division) in f and g.

Addition $\quad h(x)=f(x)+g(x)$
Subtraction $\quad h(x)=f(x)-g(x)$
multiplication $h(x)=f(x) \cdot g(x)$
Division $\quad h(x)=\frac{f(x)}{g(x)}$
The domain of h consists of the x-values that are in the domains of both f and g. Additionally, the domain of a quotient does not include x-values for which $g(x)=0$.

- The composition of the function f with the function g is: $h(x)=f(g(x))$

The domain of h is the et of all x-values such that x is the domain of g and $g(x)$ is in the domain of f.

Problems:

1. Perform the indicated operation and state the domain.
(a) $f+g ; f(x)=x+5, g(x)=3 x-1$
(b) $f-g ; f(x)=x^{2}-4, g(x)=2|x|+1$
(c) $f \cdot g ; f(x)=9 x-4, g(x)=x+3$
(d) $\frac{f}{g} ; f(x)=5 x^{2}-2 x, g(x)=x$
2. Let $f(x)=10 x-3$, and $g(x)=x+4$. Perform the indicated operation and state the domain.
(a) $f(g(x))$
(b) $g(f(x))$
(c) $f(f(x))$
(d) $g(g(x))$
3. Suppose $f(x)=3 x+8$ and $g(x)=\sqrt{x-4}$.
(a) Find $f(g(4))$ and $g(f(4))$;
(b) Is $g(f(-4))$ defined? Why or why not?
4. Let $f(x)=2 x-3$. Find $f(f(\mathrm{x}))$ and $f(f(f(x)))$.
5. Let $f(x)=3 x^{2}-7$ and $g(x)=2 x+5$. What is the absolute difference between $f(g(-2))$ and $g(f(-2))$?
6. If $f(x)=x+2$ and $g(x)=x^{2}$, then for what value of x does $f(g(x))=g(f(x))$? Express your answer as a common fraction.

Homework

1. Let $f(x)=3 x-4$ and $g(x)=x+5$. Perform the indicated operation.
(a) $f(x)+g(x)$
(b) $f(x)-g(x)$
(c) $f(x) \cdot g(x)$
(d) $\frac{f(x)}{g(x)}$
(e) $f(g(x))$
(f) $g(f(x))$
2. Let f and g be functions as defined below. What is $g(f(1))$ and $g(f(-2))$?

$$
f(x)=\left\{\begin{array}{ll}
x^{2}+1 & \text { if } x<0 ; \\
4-x & \text { if } x \geq 0,
\end{array} \text { and } g(x)= \begin{cases}2 x & \text { if } x<5 ; \\
3 x & \text { if } x \geq 5\end{cases}\right.
$$

3. What is the value of $f(f(f(19)+1)+1)$ if $f(x)$

$$
\left\{\begin{array}{ll}
x^{2} & \text { if } x \text { is even } \\
\frac{x-3}{2} & \text { if } x \text { is odd }
\end{array} ?\right.
$$

