1.6 Function Operations and Composition of Functions

• Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations (addition, subtraction, multiplication, and division) in f and g.

Addition

$$h(x) = f(x) + g(x)$$

Subtraction

$$h(x) = f(x) - g(x)$$

multiplication $h(x) = f(x) \cdot g(x)$

Division

$$h(x) = \frac{f(x)}{g(x)}$$

The domain of h consists of the x-values that are in the domains of both f and g. Additionally, the domain of a quotient does not include x-values for which g(x) = 0.

• The *composition* of the function f with the function g is: h(x) = f(g(x))

The domain of h is the et of all x-values such that x is the domain of g and g(x) is in the domain of f.

Problems:

1. Perform the indicated operation and state the domain.

(a)
$$f + g$$
; $f(x) = x + 5$, $g(x) = 3x - 1$

(b)
$$f - g$$
; $f(x) = x^2 - 4$, $g(x) = 2|x| + 1$

(c)
$$f \cdot g$$
; $f(x) = 9x - 4$, $g(x) = x + 3$

(d)
$$\frac{f}{g}$$
; $f(x) = 5x^2 - 2x$, $g(x) = x$

2. Let f(x) = 10x - 3, and g(x) = x + 4. Perform the indicated operation and state the domain.

(a) f(g(x))

(b)
$$g(f(x))$$

(c) f(f(x))

- (d) g(g(x))
- **3.** Suppose f(x) = 3x + 8 and $g(x) = \sqrt{x 4}$.
- (a) Find f(g(4)) and g(f(4));

(b) Is g(f(-4)) defined? Why or why not?

4. Let f(x) = 2x - 3. Find f(f(x)) and f(f(f(x))).

5. Let $f(x) = 3x^2 - 7$ and g(x) = 2x + 5. What is the absolute difference between f(g(-2)) and g(f(-2))?

6. If f(x) = x + 2 and $g(x) = x^2$, then for what value of x does f(g(x)) = g(f(x))? Express your answer as a common fraction.

Homework

1. Let f(x) = 3x - 4 and g(x) = x + 5. Perform the indicated operation.

(a)
$$f(x) + g(x)$$

(b)
$$f(x) - g(x)$$

(c)
$$f(x) \cdot g(x)$$

(d)
$$\frac{f(x)}{g(x)}$$

(e)
$$f(g(x))$$

(f)
$$g(f(x))$$

2. Let f and g be functions as defined below. What is g(f(1)) and g(f(-2))?

$$f(x) = \begin{cases} x^2 + 1 & \text{if } x < 0; \\ 4 - x & \text{if } x \ge 0, \end{cases} \text{ and } g(x) = \begin{cases} 2x & \text{if } x < 5; \\ 3x & \text{if } x \ge 5. \end{cases}$$

3. What is the value of f(f(f(19) + 1) + 1) if f(x) $\begin{cases} x^2 & \text{if } x \text{ is even} \\ \frac{x-3}{2} & \text{if } x \text{ is odd} \end{cases}$